Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Front Physiol ; 13: 898792, 2022.
Article En | MEDLINE | ID: mdl-35936917

ADCK2 haploinsufficiency-mediated mitochondrial coenzyme Q deficiency in skeletal muscle causes mitochondrial myopathy associated with defects in beta-oxidation of fatty acids, aged-matched metabolic reprogramming, and defective physical performance. Calorie restriction has proven to increase lifespan and delay the onset of chronic diseases associated to aging. To study the possible treatment by food deprivation, heterozygous Adck2 knockout mice were fed under 40% calorie restriction (CR) and the phenotype was followed for 7 months. The overall glucose and fatty acids metabolism in muscle was restored in mutant mice to WT levels after CR. CR modulated the skeletal muscle metabolic profile of mutant mice, partially rescuing the profile of WT animals. The analysis of mitochondria isolated from skeletal muscle demonstrated that CR increased both CoQ levels and oxygen consumption rate (OCR) based on both glucose and fatty acids substrates, along with mitochondrial mass. The elevated aerobic metabolism fits with an increase of type IIa fibers, and a reduction of type IIx in mutant muscles, reaching WT levels. To further explore the effect of CR over muscle stem cells, satellite cells were isolated and induced to differentiate in culture media containing serum from animals in either ad libitum or CR diets for 72 h. Mutant cells showed slower differentiation alongside with decreased oxygen consumption. In vitro differentiation of mutant cells was increased under CR serum reaching levels of WT isolated cells, recovering respiration measured by OCR and partially beta-oxidation of fatty acids. The overall increase of skeletal muscle bioenergetics following CR intervention is paralleled with a physical activity improvement, with some increases in two and four limbs strength tests, and weights strength test. Running wheel activity was also partially improved in mutant mice under CR. These results demonstrate that CR intervention, which has been shown to improve age-associated physical and metabolic decline in WT mice, also recovers the defective aerobic metabolism and differentiation of skeletal muscle in mice caused by ADCK2 haploinsufficiency.

2.
J Vis Exp ; (180)2022 02 10.
Article En | MEDLINE | ID: mdl-35225269

Most of the cell's energy is obtained through the degradation of glucose, fatty acids, and amino acids by different pathways that converge on the mitochondrial oxidative phosphorylation (OXPHOS) system, which is regulated in response to cellular demands. The lipid molecule Coenzyme Q (CoQ) is essential in this process by transferring electrons to complex III in the electron transport chain (ETC) through constant oxidation/reduction cycles. Mitochondria status and, ultimately, cellular health can be assessed by measuring ETC oxygen consumption using respirometric assays. These studies are typically performed in established or primary cell lines that have been cultured for several days. In both cases, the respiration parameters obtained may have deviated from normal physiological conditions in any given organ or tissue. Additionally, the intrinsic characteristics of cultured single fibers isolated from skeletal muscle impede this type of analysis. This paper presents an updated and detailed protocol for the analysis of respiration in freshly isolated mitochondria from mouse skeletal muscle. We also provide solutions to potential problems that could arise at any step of the process. The method presented here could be applied to compare oxygen consumption rates in diverse transgenic mouse models and study the mitochondrial response to drug treatments or other factors such as aging or sex. This is a feasible method to respond to crucial questions about mitochondrial bioenergetics metabolism and regulation.


Mitochondria , Oxidative Phosphorylation , Animals , Energy Metabolism , Mice , Mitochondria/metabolism , Mitochondria, Muscle/chemistry , Muscle, Skeletal , Oxygen Consumption/physiology
3.
Biofactors ; 47(4): 551-569, 2021 Jul.
Article En | MEDLINE | ID: mdl-33878238

Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.


Aging/genetics , Alkyl and Aryl Transferases/genetics , Ataxia/genetics , GTP Phosphohydrolases/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Muscle Weakness/genetics , Niemann-Pick Disease, Type C/genetics , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Aging/metabolism , Alkyl and Aryl Transferases/metabolism , Animals , Ataxia/metabolism , Ataxia/pathology , Energy Metabolism/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Regulation , Humans , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mitochondrial Proteins/metabolism , Muscle Weakness/metabolism , Muscle Weakness/pathology , Mutation , Niemann-Pick C1 Protein/genetics , Niemann-Pick C1 Protein/metabolism , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Signal Transduction , Ubiquinone/genetics , Ubiquinone/metabolism
4.
J Clin Med ; 8(9)2019 Sep 02.
Article En | MEDLINE | ID: mdl-31480808

Fatty acids and glucose are the main bioenergetic substrates in mammals. Impairment of mitochondrial fatty acid oxidation causes mitochondrial myopathy leading to decreased physical performance. Here, we report that haploinsufficiency of ADCK2, a member of the aarF domain-containing mitochondrial protein kinase family, in human is associated with liver dysfunction and severe mitochondrial myopathy with lipid droplets in skeletal muscle. In order to better understand the etiology of this rare disorder, we generated a heterozygous Adck2 knockout mouse model to perform in vivo and cellular studies using integrated analysis of physiological and omics data (transcriptomics-metabolomics). The data showed that Adck2+/- mice exhibited impaired fatty acid oxidation, liver dysfunction, and mitochondrial myopathy in skeletal muscle resulting in lower physical performance. Significant decrease in Coenzyme Q (CoQ) biosynthesis was observed and supplementation with CoQ partially rescued the phenotype both in the human subject and mouse model. These results indicate that ADCK2 is involved in organismal fatty acid metabolism and in CoQ biosynthesis in skeletal muscle. We propose that patients with isolated myopathies and myopathies involving lipid accumulation be tested for possible ADCK2 defect as they are likely to be responsive to CoQ supplementation.

5.
J Clin Med ; 6(3)2017 Mar 05.
Article En | MEDLINE | ID: mdl-28273876

Coenzyme Q10 (CoQ10) deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA) depletion and mutations in genes involved in the fatty acid ß-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors.

6.
RNA Biol ; 13(7): 622-34, 2016 07 02.
Article En | MEDLINE | ID: mdl-26690054

Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.


ELAV-Like Protein 1/metabolism , Gene Expression Regulation/physiology , Oxidative Phosphorylation , Oxygen Consumption/physiology , Ubiquinone/biosynthesis , 3' Untranslated Regions/physiology , ELAV-Like Protein 1/genetics , HeLa Cells , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Humans , Ubiquinone/genetics
7.
Mol Syndromol ; 5(3-4): 170-9, 2014 Jul.
Article En | MEDLINE | ID: mdl-25126050

The human syndrome of coenzyme Q (CoQ) deficiency is a heterogeneous mitochondrial disease characterized by a diminution of CoQ content in cells and tissues that affects all the electron transport processes CoQ is responsible for, like the electron transference in mitochondria for respiration and ATP production and the antioxidant capacity that it exerts in membranes and lipoproteins. Supplementation with external CoQ is the main attempt to address these pathologies, but quite variable results have been obtained ranging from little response to a dramatic recovery. Here, we present the importance of modeling human CoQ deficiencies in animal models to understand the genetics and the pathology of this disease, although the election of an organism is crucial and can sometimes be controversial. Bacteria and yeast harboring mutations that lead to CoQ deficiency are unable to grow if they have to respire but develop without any problems on media with fermentable carbon sources. The complete lack of CoQ in mammals causes embryonic lethality, whereas other mutations produce tissue-specific diseases as in humans. However, working with transgenic mammals is time and cost intensive, with no assurance of obtaining results. Caenorhabditis elegans and Drosophila melanogaster have been used for years as organisms to study embryonic development, biogenesis, degenerative pathologies, and aging because of the genetic facilities and the speed of working with these animal models. In this review, we summarize several attempts to model reliable human CoQ deficiencies in invertebrates, focusing on mutant phenotypes pretty similar to those observed in human patients.

8.
BMJ Open ; 3(3)2013 Mar 25.
Article En | MEDLINE | ID: mdl-23533218

OBJECTIVES: Coenzyme Q10 (CoQ10) deficiency syndrome is a rare condition that causes mitochondrial dysfunction and includes a variety of clinical presentations as encephalomyopathy, ataxia and renal failure. First, we sought to set up what all have in common, and then investigate why CoQ10 supplementation reverses the bioenergetics alterations in cultured cells but not all the cellular phenotypes. DESIGN MODELLING STUDY: This work models the transcriptome of human CoQ10 deficiency syndrome in primary fibroblast from patients and study the genetic response to CoQ10 treatment in these cells. SETTING: Four hospitals and medical centres from Spain, Italy and the USA, and two research laboratories from Spain and the USA. PARTICIPANTS: Primary cells were collected from patients in the above centres. MEASUREMENTS: We characterised by microarray analysis the expression profile of fibroblasts from seven CoQ10-deficient patients (three had primary deficiency and four had a secondary form) and aged-matched controls, before and after CoQ10 supplementation. Results were validated by Q-RT-PCR. The profile of DNA (CpG) methylation was evaluated for a subset of gene with displayed altered expression. RESULTS: CoQ10-deficient fibroblasts (independently from the aetiology) showed a common transcriptomic profile that promotes cell survival by activating cell cycle and growth, cell stress responses and inhibiting cell death and immune responses. Energy production was supported mainly by glycolysis while CoQ10 supplementation restored oxidative phosphorylation. Expression of genes involved in cell death pathways was partially restored by treatment, while genes involved in differentiation, cell cycle and growth were not affected. Stably demethylated genes were unaffected by treatment whereas we observed restored gene expression in either non-methylated genes or those with an unchanged methylation pattern. CONCLUSIONS: CoQ10 deficiency induces a specific transcriptomic profile that promotes cell survival, which is only partially rescued by CoQ10 supplementation.

9.
Aging (Albany NY) ; 2(4): 200-23, 2010 Apr.
Article En | MEDLINE | ID: mdl-20453260

The Mitochondrial Free Radical Theory of Aging (MFRTA) is currently one of the most widely accepted theories used to explain aging. From MFRTA three basic predictions can be made: long-lived individuals or species should produce fewer mitochondrial Reactive Oxygen Species (mtROS) than short-lived individuals or species; a decrease in mtROS production will increase lifespan; and an increase in mtROS production will decrease lifespan. It is possible to add a further fourth prediction: if ROS is controlling longevity separating these parameters through selection would be impossible. These predictions have been tested in Drosophila melanogaster. Firstly, we studied levels of mtROS production and lifespan of three wild-type strains of Drosophila, Oregon R, Canton S and Dahomey. Oregon R flies live the longest and produce significantly fewer mtROS than both Canton S and Dahomey. These results are therefore in accordance with the first prediction. A new transgenic Drosophila model expressing the Ciona intestinalis Alternative Oxidase (AOX) was used to test the second prediction. In fungi and plants, AOX expression regulates both free radical production and lifespan. In Drosophila, AOX expression decreases mtROS production, but does not increase lifespan. This result contradicts the second prediction of MFRTA. The third prediction was tested in flies mutant for the gene dj-1beta. These flies are characterized by an age-associated decline in locomotor function and increased levels of mtROS production. Nevertheless, dj-1beta mutant flies do not display decreased lifespan, which again is in contradiction with MFRTA. In our final experiment we utilized flies with DAH mitochondrial DNA in an OR nuclear background, and OR mitochondrial DNA in DAH nuclear background. From this, Mitochondrial DNA does not control free radical production, but it does determine longevity of females independently of mtROS production. In summary, these results do not systematically support the predictions of the MFRTA. Accordingly, MFRTA should be revised to accommodate these findings.


Aging/metabolism , Drosophila melanogaster/metabolism , Longevity , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Animals , Female , Male , Oxygen Consumption , Species Specificity
10.
PLoS One ; 5(1): e8549, 2010 Jan 06.
Article En | MEDLINE | ID: mdl-20066047

BACKGROUND: A point mutation in the Drosophila gene technical knockout (tko), encoding mitoribosomal protein S12, was previously shown to cause a phenotype of respiratory chain deficiency, developmental delay, and neurological abnormalities similar to those presented in many human mitochondrial disorders, as well as defective courtship behavior. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe a transcriptome-wide analysis of gene expression in tko(25t) mutant flies that revealed systematic and compensatory changes in the expression of genes connected with metabolism, including up-regulation of lactate dehydrogenase and of many genes involved in the catabolism of fats and proteins, and various anaplerotic pathways. Gut-specific enzymes involved in the primary mobilization of dietary fats and proteins, as well as a number of transport functions, were also strongly up-regulated, consistent with the idea that oxidative phosphorylation OXPHOS dysfunction is perceived physiologically as a starvation for particular biomolecules. In addition, many stress-response genes were induced. Other changes may reflect a signature of developmental delay, notably a down-regulation of genes connected with reproduction, including gametogenesis, as well as courtship behavior in males; logically this represents a programmed response to a mitochondrially generated starvation signal. The underlying signalling pathway, if conserved, could influence many physiological processes in response to nutritional stress, although any such pathway involved remains unidentified. CONCLUSIONS/SIGNIFICANCE: These studies indicate that general and organ-specific metabolism is transformed in response to mitochondrial dysfunction, including digestive and absorptive functions, and give important clues as to how novel therapeutic strategies for mitochondrial disorders might be developed.


Disease Models, Animal , Drosophila/genetics , Gene Expression , Mitochondrial Diseases/genetics , Animals , Female , Gene Expression Profiling , Male , Oxidative Phosphorylation , Point Mutation , Ribosomal Proteins/genetics
11.
Cell Metab ; 9(5): 449-60, 2009 May.
Article En | MEDLINE | ID: mdl-19416715

Defects in mitochondrial OXPHOS are associated with diverse and mostly intractable human disorders. The single-subunit alternative oxidase (AOX) found in many eukaryotes, but not in arthropods or vertebrates, offers a potential bypass of the OXPHOS cytochrome chain under conditions of pathological OXPHOS inhibition. We have engineered Ciona intestinalis AOX for conditional expression in Drosophila melanogaster. Ubiquitous AOX expression produced no detrimental phenotype in wild-type flies. However, mitochondrial suspensions from AOX-expressing flies exhibited a significant cyanide-resistant substrate oxidation, and the flies were partially resistant to both cyanide and antimycin. AOX expression was able to complement the semilethality of partial knockdown of both cyclope (COXVIc) and the complex IV assembly factor Surf1. It also rescued the locomotor defect and excess mitochondrial ROS production of flies mutated in dj-1beta, a Drosophila homolog of the human Parkinson's disease gene DJ1. AOX appears to offer promise as a wide-spectrum therapeutic tool in OXPHOS disorders.


Drosophila/metabolism , Mitochondria/enzymology , Oxidative Phosphorylation , Oxidoreductases/biosynthesis , Animals , Antimycin A/analogs & derivatives , Antimycin A/pharmacology , Ciona intestinalis/enzymology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phenotype , Plant Proteins , Potassium Cyanide/pharmacology , Protein Deglycase DJ-1 , Reactive Oxygen Species/metabolism
12.
Apoptosis ; 12(7): 1195-208, 2007 Jul.
Article En | MEDLINE | ID: mdl-17245640

It has recently been shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis. We demonstrate that this microtubule reformation occurs in many cell types and under different apoptotic stimuli. We confirm that the apoptotic microtubule network possesses a novel organization, whose nucleation appears independent of conventional gamma-tubulin ring complex containing structures. Our analysis suggests that microtubules are closely associated with the plasma membrane, forming a cortical ring or cellular "cocoon". Concomitantly other components of the cytoskeleton, such as actin and cytokeratins disassemble. We found that colchicine-mediated disruption of apoptotic microtubule network results in enhanced plasma membrane permeability and secondary necrosis, suggesting that the reformation of a microtubule cytoskeleton plays an important role in preserving plasma membrane integrity during apoptosis. Significantly, cells induced to enter apoptosis in the presence of the pan-caspase inhibitor z-VAD, nevertheless form microtubule-like structures suggesting that microtubule formation is not dependent on caspase activation. In contrast we found that treatment with EGTA-AM, an intracellular calcium chelator, prevents apoptotic microtubule network formation, suggesting that intracellular calcium may play an essential role in the microtubule reformation. We propose that apoptotic microtubule network is required to maintain plasma membrane integrity during the execution phase of apoptosis.


Apoptosis/physiology , Cell Membrane/physiology , Cell Membrane/ultrastructure , Microtubules/drug effects , Microtubules/metabolism , Actins/metabolism , Calcium/metabolism , Caspases/metabolism , Cell Line , Cell Membrane Permeability/drug effects , Colchicine/pharmacology , Cytoskeleton/metabolism , Humans , Intermediate Filaments/metabolism , Tubulin/metabolism
13.
Free Radic Biol Med ; 40(8): 1293-302, 2006 Apr 15.
Article En | MEDLINE | ID: mdl-16631519

Free radicals have been implicated in the action of many chemotherapeutic drugs. Here we tested the hypothesis that camptothecin and other chemotherapeutic drugs, such as etoposide, doxorubicin, and methotrexate, induce an increase in coenzyme Q(10) levels as part of the antioxidant defense against free radical production under these anticancer treatments in cancer cell lines. Chemotherapy treatment induced both free radical production and an increase in coenzyme Q(10) levels in all the cancer cell lines tested. Reduced coenzyme Q(10) form levels were particularly enhanced. Coenzyme Q(10)-increased levels were associated with up-regulation of COQ genes expression, involved in coenzyme Q(10) biosynthesis. At the translational level, COQ7 protein expression levels were also increased. Furthermore, coenzyme Q(10) biosynthesis inhibition blocked camptothecin-induced coenzyme Q(10) increase, and enhanced camptothecin cytotoxicity. Our findings suggest that coenzyme Q(10) increase is implicated in the cellular defense under chemotherapy treatment and may contribute to cell survival.


Antineoplastic Agents/pharmacology , Camptothecin/pharmacology , Ubiquinone/analogs & derivatives , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Camptothecin/toxicity , Cell Line, Tumor , Coenzymes , Free Radicals/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Oxidation-Reduction/drug effects , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism , Ubiquinone/biosynthesis , Up-Regulation/drug effects
14.
Biochim Biophys Acta ; 1713(2): 129-37, 2005 Jul 30.
Article En | MEDLINE | ID: mdl-15993380

Coenzyme Q (Q) is an essential factor in the mitochondrial electron chain but also exerts important antioxidant functions in the rest of cell membranes of aerobic organisms. However, the mechanisms of distribution of Q among cell membranes are largely unclear. The aim of the present work is to study the mechanisms of distribution of endogenous Q(10) and exogenous Q(9) among cell membranes in human HL-60 cells. Endogenous Q(10) synthesized using the radiolabelled precursor [(14)C]-pHB was first detected in mitochondria, and it was later incorporated into mitochondria-associated membranes and endoplasmic reticulum (ER). Plasma membrane was the last location to incorporate [(14)C]-Q(10). Brefeldin A prevented Q(10) incorporation in plasma membrane. Exogenous Q(9) was preferably accumulated into the endo-lysosomal fraction but a significant amount was distributed among other cell membranes also depending on the brefeldin-A-sensitive endomembrane system. Our results indicate that mitochondria are the first location for new synthesized Q. Exogenous Q is mainly incorporated into an endo-lysosomal fraction, which is then rapidly incorporated to cell membranes mainly to MAM and mitochondria. We also demonstrate that both endogenous and dietary Q is distributed among endomembranes and plasma membrane by the brefeldin A-sensitive endo-exocytic pathway.


Cell Membrane/metabolism , Ubiquinone/biosynthesis , Antioxidants/pharmacology , Blotting, Western , Brefeldin A/pharmacology , Cell Line, Tumor , Centrifugation, Density Gradient , Electron Transport , HL-60 Cells , Humans , Lysosomes/metabolism , Mitochondria/metabolism , Oxygen/chemistry , Prohibitins , Protein Binding , Subcellular Fractions , Sucrose/pharmacology , Time Factors , Ubiquinone/chemistry
15.
Biochim Biophys Acta ; 1706(1-2): 174-83, 2005 Jan 07.
Article En | MEDLINE | ID: mdl-15620378

Coenzyme Q (Q) is an obligatory component of both respiratory chain and uncoupling proteins. Also, Q acts as an antioxidant in cellular membranes. Several neurodegenerative diseases are associated with modifications of Q10 levels. For these reasons, therapies based on Q supplementation in the diet are currently studied in order to mitigate the symptoms of these diseases. However, the incorporation of exogenous Q also affects aging process in nematodes probably affecting reactive oxygen species (ROS) production. The aim of the present work is to clarify if supplementation with both Q10 and Q6 isoforms affects mitochondrial Q10 content, respiratory chain activity and ROS levels in human cells. Cells incorporated exogenously added Q10 and Q6 isoforms into mitochondria that produced changes in mitochondrial activity depending on the side chain length. Supplementation with Q10, but not with Q6, increased mitochondrial Q-dependent activities. However, Q6 affected the mitochondrial membrane potential, ROS production, and increased the protein levels of both catalase and Mn-superoxide dismutase (Mn-SOD). Also, Q6 induced a transient decrease in endogenous mitochondrial Q10 levels by increasing its catabolism. These results show that human cells supplemented with Q6 undergo a mitochondrial impairment, which is not observed with Q10 supplementation.


Mitochondria/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/biosynthesis , Ubiquinone/metabolism , Cell Fractionation , Coenzymes , Electron Transport/drug effects , Electron Transport/physiology , Flow Cytometry , Fluorescence , HL-60 Cells , Humans , Isoenzymes , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Substrate Specificity , Ubiquinone/pharmacology
16.
Biochim Biophys Acta ; 1659(2-3): 190-6, 2004 Dec 06.
Article En | MEDLINE | ID: mdl-15576051

The Drosophila mutant technical knockout (tko), affecting the mitochondrial protein synthetic apparatus, exhibits respiratory chain deficiency and a phenotype resembling various features of mitochondrial disease in humans (paralytic seizures, deafness, developmental retardation). We are using this mutant to analyse the cellular and genomic targets of mitochondrial dysfunction, and to identify ways in which the phenotype can be alleviated. Transgenic expression of wild-type tko in different patterns in the mutant background reveals critical times and cell-types for production of components of the mitochondrial disease-like phenotype. Mitochondrial bioenergy deficit during the period of maximal growth, as well as in specific parts of the nervous system, appears to be most deleterious. Inbreeding of tko mutant lines results in a systematic improvement in all phenotypic parameters tested. The resulting sub-lines can be used for genetic mapping and transcriptomic analysis, revealing clues as to the genes and pathways that can modify mitochondrial disease-like phenotypes in a model metazoan.


Drosophila/genetics , Mitochondrial Diseases/etiology , Animals , Disease Models, Animal , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Mutation , Phenotype , Transcription, Genetic
...